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GENERAL THEOREMS OF THE ELECTROMECHANICS OF THIN ELASTIC SHELLS* 

A.L. RADOVINSKII 

The properties of the problem of the dynamics of thin elastic 
electrically conducting shells in arbitrary electromagnetic fields are 
considered. On the basis of the non-linear equations /l/ obtained by 
asymptotic integration of the equations of elasticity theory and Maxwell 
equations over the thickness (in the quasistationary approximation) an 
expression is derived for the functional of the power governing the 
power balance in the process being investigated. A complete system of 
natural boundary conditions is formulated for the problem. 
Orthogonality conditions for the eigensolutions expressing the 
appropriate formulations of the reciprocity theorem are deduced for two 
fundamental problems of the electromechanics of thin elastic shells /l/ 
whose equations are linear and can be obtained from the original 
equations without loss of accuracy. The question of the decomposition 
of solutions of the inhomogeneous problems that occur here in 
eigensolutions is considered. 

Questions of the energy balance and uniqueness of the solutions in 
the first linear problem (magnetoelasticity) were also examined in /2, 
3/. 

i. We will consider a triorthogonal system of coordinates (a&, a2, a,), given in an 
infinite space V around a shell in which the shell can be considered as a mathematical slit 
over its middle surface S. Let S lie on the coordinate surface aa = 0 and be either 
closed or bounded by a closed line S coincident with the shell edges. We identify the 
properties of the surrounding medium with the properties of a vacuum. We assume the shell to 
be elastic, non-magnetic, and to have finite electrical conductivity. 

The solution of the problem of small forced electrical vibrations of such a shell in an 
arbitrary, generally time-varying electromagnetic field is the simultaneous integration of 
the equations 

BE/&u-- X"'-XX'P'-X(m) = 0 on S 

y&F + B,' - rot, (II' x B) = 0 on S 

AQ, =Oinl; 

(1.1) 

with satisfaction the condition 

(&i&?a,),+ = (%D/aa,), (1.2) 

Here 

X"' = - Bphu", XC') = - &l(grad,F x is) x B (1.3) 

and vectors of the inertial forces (X@)) and the ponderomotive forces (X(P)), and X(m) is 
the vector of active forces of mechanical origin; 

B=B"+f, f = % [(grad @),+ + (grad @),-I 
F = (CD),’ - (q- (1.4) 

are formulas connecting the values of the vectors on the surface S: the total magnetic 
induction (B), the given magnetic induction of the secondary sources (B”) and the magnetic 
induction of the eddy currents (f), Cb is-. the potential of the eddy current magnetic induction 
b (determined in V by the expression b = grad 0), F is the drop in the potential @ on S, u 
is the vector of elastic displacements of the shell middle surface, L is the operator of the 
shell theory equations in displacements /4/, their expressions in the domains V and S, 
respectively are taken for the Laplace (A) and gradient operators, without and with the sub- 
script s, the following notation is used (.)Bf = (.)a,-% rot, (.) = [rot (.).i,],, i, - i,, are 
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unit direction along a, - aQ, y = (2&,~)? p, E, 2h, d are the density, Young's modulus, and 

the shell thickness and conductivity, pO is the magnetic constant and the dot denotes the 

derivative with respect to time t. 
For values of B0 and X(m) given as functions of time and the coordinates, (l.l)-(1.4) 

form a closed non-linear systemin the unknowns u and # to which certain boundary conditions 

at the edge G and at infinity /5/ must be appended for the solution. They are discussed 

below in Sect.3. 
Eqs.(l.l)-(1.4) are the vector mode of writing equations /I/ obtained by the asymptotic 

method by integrating the equations of elasticity theory and Maxwell equations over the shell 
thickness within the framework of certain assumptions, particularly the boundedness of the 
variability of the processes under investigation in time by those limits in which no skin- 
effect will appear in the shell thickness /6/ and the two-dimensional dynamic theory of 
elastic shells holds /4/. 

The linear eddy current density J and the electric field e in the shell can be expressed 
in terns of the quantities introduced by means of the equalities 

J =p;'grad, F x i,, e = (2ho)-'J--u* x B (1.5) 

2. Let (u, @) be a certain solution of Eqs.(l.l)-(1.4). Then the power balance in 
the problem determined by these equations is expressed by the functional 

N =flW + N(i) + ~2) +_ fl$)_ pi@_ pF)_ PC)_. pi*) _pF) =o (2.9 

where NtT is the elastic strain power of the shell, A'<') is the power of the shell 
inertial forces, iv,(') is the eddy current power in the shell, N,n is the power of the 
induced electromagnetic field in the space surrounding the shell, P&“‘) is the power of 
the edge forces and moments in the shell, F&Y) is the edge current power, p,Ce) is the 
power loss by radiation, and P&"') and p8fe) are, respectively, the active power of the 
dynamic load of mechanical and electromagnetic origin. In the general case they are expressed 
by the formulas 

N(~) = SS (Tj&k. + M,,@')ds, N'" = ph[SS ueads] 

NY' = ~QSS (grad, F)sds, Nf’ = (~~J~[SSS (gradaj)ndu]' 

ds = AIA&ld~, dv = AzAAaA&,da&a, 

Here Al -AS are coefficients of the first quadratic form of the given coordinate 
system, da is an element of the surface C enclosing the shell (by taking the latter to be a 
sphere of radius r we will assume that r-+60), N is the unit normal to C external to V 
(and later to S) Tfk, Mfkv E/k, PJk are tensors of the forces, moments, strains, and angles 
of rotation of the shell, P,Q,r are the boundary values of the vectors of the surface 
forces, moments, and elastic rotations, and j,k = I,2 are the subscripts over which summation 
is made. Integration, here and later is over the surfaces S, C, the volume V, and the contour 
G with elements ds, do, clv, G?CQ. unless otherwise stated. 

Computations resulting in obtaining the relationships (2.1) and (2.2) can be reduced to 
the following scheme. We write the first two equations in (1.1) symbolically in the form 
M (II, @, Xc”‘)) = 0 and E(u,Q, B$f = 0, respectively, 
in (1.1) with respect to t. 

and we differentiate the last equation 
Multiplying these equations by a certain quantity and integrating 

over the domains of definition, we form the sum 

N = 1s LM(u,~,X(“))u’--(u,cD,B,“) f]ds- s$s [A(@@] dv=O 

Let us expand the expressions in (2.3) 

SSS2Eh(Lu)u’ds = N”“‘-p;“‘) (2.4) 

Eq.(2.4) follows directly from the results of 141 if the operator L is formally self- 
adjoint. The power of the elastic strains N(=) can here be expressed in terms of the 
shell strain potential energy W by means of the formula .A@) = W where 
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ekr 0, %kr T are components of the tangential and bending strains of the shell and Y is 
Poisson's ratio. The equalities 

- ss x(‘+,’ ,js = N(“), -SS(~)ds=-PP!c)-r,‘SSf,‘Fds 

can be confirmed by direct substitution taking (1.3) and (1.4) into account. 
Using (1.31 and applying Stokes's theorem we have 

SS [- x'*'u* + rot,(u’ x B)$-ds =&ss rotaIF (u* x B)f& = 

--lLo1~F(-I)h(BIU2.-B~UQ.)Akdak, Z,k=1,2, Z#k 

Green's theorem is used in two cases. We hence obtain 

P-5) 

(2.6) 

(2.7) 

Integration in the surface integral in (2.81 is over the whole surface SC+ S- f 2, 
enclosing V where S* are understood to be the facial surfaces as=&0 on a mathematical 
slit S. It is taken into account in obtaining the last component (2.81 that (&b/&V),f = 
-(&Dl&&+, (B@IBN),- = (a@/au,),_, and also the equalities (1.21 and (1.41. 

Summing the expressions in (2.31, taking (2.4)-(2.8) into account, we obtain (2.11. 
We note that the last components in (2.5) and (2.8) cancel one another here while (2.6) and 
the last component in (2.7) yield P,O when added (the second formula in (1.7) must also be 
taken into account here). 

We assume that the domain v can contain non-variable closed subdomains (V’,V”) that 
do not make contact with the facial surfaces S and are occupied by material with the properties 
of an ideal dielectric (Ir') or an ideal conductor (V") (the subdomains If” should be simply- 
connected). An ideal dielectric does not distort the field Q, while the normal component b 

(n' is the normal) on the surface of an ideal conductor equals zero and therefore Wf&s’ =O 
in the surface integral (2.8). Consequently, the balance of the powers (2.11 and (2.21 
remains valid. We will also assume that the condition u-n = 0 is satisfied on sections 
of the boundary G in contact with the ideal conductor, excepting penetration of the boundary 
into V". 

3. We will examine the boundary conditions that must be appended to Eqs.(l.l)-(1.4) by 
limiting the examination to those for which Ppcm) + Pp@) + P,(e) = 0 for compliance. 

The first group of conditions in mechanical in nature, forms an ordinary system of shell 
theory boundary conditions and, as is shown in /5/, ensures that P&m’ will equal zero for 
such idealized boundary conditions as rigid clamping, hinge support, and a free edge, say. 

The second group of conditions consists of satisfying the ordinary condition,of bounded- 
ness /6/ of the potential @ at infinity (here PA@ = 0), the condition NV& = 0 on 
the surface of the subdomain V” and one of the following conditions ( T and n are the 
tangent and normal to G): 

F = 0 or 8Flan = 0 on G (3.1) 

Their physical meaning is as follows. As follows from (1.51, the first and second 
conditions in (3.1) denote that the normal and tangential components of the linear eddy 
current density to G equal zero, which corresponds to conditions of a boundary insulated from 
and in contact with an ideal conductor. Taking into account that in the case of boundary 
contact with an ideal conductor u.n' = 0 (see Sect.21 and B.n' = 0, it is easy to obtain 
the equality e, = (2hu)%3Fl0n from (1.5). Therefore, satisfaction of Conditions (3.1) 
ensures the equality P,@) = 0. 
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4. Eqs.(l.l)-(1.4) are non-linear. They can be linearized /l/ without loss of accuracy 
when solving the following two fundamental problems of the electromechanics of thin elastic 
shells. 

Problem 1 is to determine the influence of a constant (in time) magnetic field B" on 
the free vibrations (X(m) = 0) or forced vibrations (X(“‘) =X@“) (t)) of a shell. The 
appropriate linear form of the equations can be obtained from (l.l)-(1.4) if we put Ba' =fQ 
in the second equation in tl.l), while it is assumed that B =B" in the remaining 

equations. These simplifications are associated with the fact that the magnetic field 
occurring because of small shell vibrations is small compared with the magnetic field of the 
secondary sources. 

Problem 2 is to determine the elastic vibrations of a shell caused by a variable magnetic 
field B" = B"(t). The appropriate equations can be obtained from (l.l)-(1.4) by neglecting 
the last component rot,@' X B) in the second equation in (1.1). This is related to the 
fact that the eddy currents caused by small shell vibrations are small compared with the 
currents induced by the variable magnetic field ~3" of the secondary sources. 

The solution of Problem 1 requires the joint integration of the appropriate equations. 
The equations of Problem 2 split into two subsystems whose integration determines the 

two succeeding steps in solving the problem. The first step is the joint integration of the 
equations obtained fron the second and third equations in (1.1). The field CD (and the 
function F) is hence determined. The second step is to solve the usual problem of integrating 
the equations of shell motion (the first equation in (1.1)) for a known pressure X(p) 
(determined by direct actions from (1.2)) and the pressure of the active forces Xfa) (these 
may not be present, Xinj =O). The integration problems solved in both steps are linear. 

Problem 1 agrees with the problem of the magnetoelasticity of thin shells formulated in 
/7/, while the equations of Problem 1, as shown in /a/, can be obtained from the equations in 
/7/ by certain manipulations including the introduction of a magnetic potential and dis- 
carding asymptotically small terms. The first step in Problem 2 is identical with the 
electrodynamic problems of thin conducting shells /9/ while the appropriate equations can be 
reduced to the equations in /lo/. 

5 Let us examine Problem 1 by assuming that the perturbing forces 
quantbiies desired vary with time as exp(!&). 

X(m) and all the 
After discarding this factor in the equations 

of Problem 1 we obtain them in the form 

M, (u, @, ‘& X’“‘) = i%hh -!- 2ph%1+ pi’ (grad, F x is) x B" - Xcrn) = 0 (5.2) 

We will first investigate the properties of the eigensolutions of Problem (5.1) by 
setting X(m) = 0. 

Let (u,t), @CO, Q(t)) and (U(,,! Q+,,? Q,,) be two eigensolutions of the homogeneous Eqs. 
(5.1) that satisfy the boundary conditions listed in Sect.3 that ensure that P$") + pr) + pg’ 

equals zero. (It is henceforth assumed everywhere that the solutions of all the boundary 
value problems under consideration satisfy such boundary conditions). 

We form the functional 

Using the procedures described in Sect.2, we obtain 

(5.2) 

Taking account of the symmetry of the integrands Wont, Ittal Ptepj, Qttq) with respect to 
;F stb;c;ipts (t, q),. we form the difference NCLq) - NCqt, and neglecting the common factor 

19) (0 we obtain the equality 



W,tn) + Q,w - Q,t,Q,,J,t,, = 07 t f Q 

Forming the differences &t)flc~q) - Q<&'o~, and S&$~~,, - SL,t,Na,,, we can obtain two 
more equations analogous to (5.3) 

P(Q) + ~~*~~~~)(~~~~ i- Q,,,) I@,, = 0, P(Q) i (Q(t) + Q,,,) (B'(Q) + Qm,) = 0 (5.4) 

Eqs.(5.3) and (5.4) are three different kinds of analogue for the conditions of 
orthogonality of the eigensolutions in the problem of the magnetoelasticity of thin shells. 

We will now examine the problem of expanding the forms of forced vibrations of a shell 
under the action of a harmonic force X(m) acting at the angular frequency Q,, in eigen- 
solutions of the problem. To do this we set 52 = iG?*, in (5.1) and we seek the solution 
in the form 

We form the functional 

from which we obtain the equality 

by taking account of (5.51, (5.2) and (5.31. 
Specifying the values 1,2,... to 4 we obtain an infinite system of linear equations 

in the coefficients A,, of the expansions (5.5). 

6. We will examine the first step in the solution of Problem 2 by assuming that B" 
and CD vary with time as exp(Q2t). We here start from the equations 

Ea (Q a, B,") = yA$ + Qj, f iU3,"=0, A@ = 0 (6.1) 

0) 
Let @ttt, Q& and (@NIP %t) be two eigensolutions of the homogeneous Eqs.(G.l) @a" = 

We form the functional 

Taking the difference NVP) - Nmt) and discarding the common factor (Q(r) 
(6.2) we obtain two equations 

Q(tq> = 0, P (tq) = 0, f # 4J 

- 

(6.2) 

%a) 9 using 

(6.3) 

that express the orthogonality conditions and reciprocity theorem in the electrodynamic 
problem of thin conducting shells. 

The eddy currents and the electromagnetic field for a shell in a harmonic field B" 
(of angular frequency Sz,) of secondary sources, will be determined by eigenfunction 
expansions by setting 61 = iB,, in (6.1) and we represent Q in the form of the sum (5.5). 

Let us form the 

from which we obtain an expression for the coefficients A, of the expansion (5.5) for @ 
by taking account of (6.2) 
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in. A* = iP, - n,,, ss as 
B30F(n) @OQ(,,)) 

According to (6.21, the substitution Qt,,,,, = -P~n,,$2~n) can be made here. 
The equations and properties of the solutions of the second step in Problem 2 are 

investigated in detail in shell theory. It must here be kept in mind that because of the 
non-linearity of (1.3) for X@) in the derivatives of the function @ the magnetic 
pressure on the shell contains a constant [time-independent1 component and a harmonic com- 
ponent (with angular frequency 2Q*)- 

?. As is seen from (2.11 and (2.2) the electromechanical process in a shell is non- 
conservative and accompanied by a power loss governed by the component I$@) and related 
to the liberation of heat because of the heating of the shell by the eddy'currents. Con- 
sequently, the problem should generally be considered from the aspect of magnetothermoelas- 
ticity /ll/ i.e.,,temperature stresses should be taken into account.Leaving this question as 
outside the scope of this paper, we note that thermal losses in a shell occur in the com- 
ponent II NW of (2.11, while they can be determined (taking (6.3) into account) from the 
formula 

REFERENCES 

1. 

2. 

3. 

4. 

5. 
6. 

7. 

8. 

9. 

RADOVINSKII A.L., Dynamics of elastic electrically conducting shells in constant and non- 
stationary magnetic fields, PMM, 50, 5, 1986. 

SARKISYAN S.O., Energy equations and uniqueness theorem in the magnetoelasticity of thin 
shells. Uch. Zap. Erevan Univ., 2, 1985. 

SARKISYAN S.O., Reciprocity theorem in the magnetoelasticity of thin shells, Mekhanika, 
6, Izd. Erevan Univ., 1987. 

GOL'DENVEIZER A-L., LIDSKII V.B. and TOVSTIK P-E., Free Vibrations of Thin Elastic Shells, 
Nauka, Moscow, 1979. 

GOL'DENVEIZER A.L., Theory of Elastic Thin Shells, Nauka, Moscow, 1976. 
KOSHLYAKOV N-S., GLINER E.B. and SNIRNOV M-M., Partial Differential Eguations of Mathe- 
matical Physics. Vyssh. Shkola, Moscow, 1970. 

AMBARTSUMYAN S.A., EAGDASARYAN G.E. and BELUBEKYAN M-V., Magnetoelasticity of Thin Shells 
and Plates. Nauka, Moscow, 1977. 

RADOVINSKII A.L., On equations of plate and shell vibrations in a magnetic field. Theory 
and Numerical Methods of Analysing Plates and Shells, 2, Isd. Tbilizi, Univ., 1984. 

TOZONI O.V. and MAERGOIZ I.D., Analysis of Three-dimensional Electromagnetic Fields. 
Tekhnika, Kiev, 1974. 

10. ASTAKHOV V.I., Problem of analysing a quasistationary electromagnetic field in conducting 
shells, Izv. Vuz, Electromekhanika, 1, 1985. 

11. PODSTRIGACH YA.S., BURAK YA.I. and KONDRAT V.F., 
Conductive Bodies. Naukova Dumka, Kiev, 1982. 

Magnetothermoelasticity of Electrically 

Translated by M.D.F. 


