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GENERAL THEOREMS OF THE ELECTROMECHANICS OF THIN ELASTIC SHELLS*

A.L. RADOVINSKII

The properties of the problem of the dynamics of thin elastic
electrically conducting shells in arbitrary electromagnetic fields are
considered. On the basis of the non-linear equations /1/ obtained by
asymptotic integration of the equations of elasticity theory and Maxwell
equations over the thickness (in the quasistationary approximation) an
expression is derived for the functional of the power governing the
power balance in the process being investigated. A complete system of
natural boundary conditions 1is formulated for the problem.
Orthogonality «conditions for the eigensolutions expressing the
appropriate formulations of the reciprocity theorem are deduced for two
fundamental problems of the electromechanics of thin elastic shells /1/
whose equations are linear and can be obtained from the original
equations without loss of accuracy. The question of the decomposition
of solutions of the inhomogeneous problems that occur here in
eigensolutions is considered.

Questions of the energy balance and uniqueness of the solutions in
the first linear problem {(magnetoelasticity) were also examined in /2,

3/.

1. We will consider a triorthogonal system of coordinates (@, @, aj), given in an
infinite space V around a shell in which the shell can be considered as a mathematical slit
over its middle surface S. Let S lie on the coordinate surface a;=0 and be either
closed or bounded by a closed line G coincident with the shell edges. We identify the

properties of the surrounding medium with the properties of a vacuum. We assume the shell to
be elastic, non-magnetic, and to have finite electrical conductivity.

The solution of the problem of small forced electrical vibrations of such a shell in an
arbitrary, generally time-varying electromagnetic field is the simultaneous integration of
the equations

2ERLu— XV _X® _X™ _0 on §

YAF + By —roty(w x B)=0 on § (1.1)
AD = 0inV
with satisfaction the condition
(0D/0ay),t = (0D/dag),~ (1.2)
Here
X9 = _20hu”, XP = _p'(grad, F x ig) X B (1.3)

and vectors of the inertial forces (X®) and the ponderomotive forces (X®), and Xm  is
the vector of active forces of mechanical origin;

B=B°+f, f—1/[(grad®), + (grad ®)]
F= (), — (@), (1-4)

are formulas connecting the values of the vectors on the surface S: the total magnetic
induction (B), the given magnetic induction of the secondary sources (B°) and the magnetic
induction of the eddy currents (f), & 1is- the potential of the eddy current magnetic induction
b (determined in V by the expression b = grad ®), F is the drop in the potential @ on S, u
is the vector of elastic displacements of the shell middle surface, L is the operator of the
shell theory equations in displacements /4/, their expressions in the domains V and &S,
respectively are taken for the Laplace (A) and gradient operators, without and with the sub-
script s, the following notation is used  (:)* = (-)gexo, TOty () = [rot (-)-igl, i, —is are
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unit direction along o&; — a5 ¥ = (2hp0)™; ¢, E, 2k, ¢ are the density, Young's modulus, and
the shell thickness and conductivity, po is the magnetic constant and the dot denotes the
derivative with respect to time t.

For values of B° and X given as functions of time and the coordinates, (1.1)-(1.4)
form a closed non-linear systemin the unknowns u and ¢ to which certain boundary conditions
at the edge G and at infinity /5/ must be appended for the solution. They are discussed
below in Sect.3.

Egs.{1.1)-{(1.4) are the vector mode of writing equations /1/ obtained by the asymptotic
method by integrating the equations of elasticity theory and Maxwell equations over the shell
thickness within the framework of certain assumptions, particularly the boundedness of the
variability of the processes under investigation in time by those limits in which no skin-
effect will appear in the shell thickness /6/ and the two-dimensional dynamic theory  of
elastic shells holds /4/.

The linear eddy current density J and the electric field e in the shell can be expressed
in terms of the quantities introduced by means of the equalities

J=plgrad, F x i, e=(2ho)1J—u x B (1.5)

2. Let (u,®d) be a certain solution of Egs.(1.1)-(1.4). Then the power balance in
the problem determined by these equations is expressed by the functional

N=N"™ 4+ N4 NO 4+ NO — P — P — PO — P{™ — P =0 @21

where N is the elastic strain power of the shell, NY is the power of the shell
inertial forces, N© is the eddy current power in the shell, N,® is the power of the
induced electromagnetic field in the space surrounding the shell, P,/™ 1is the power of

the edge forces and moments in the shell, P is the edge current power, P, ® is the
power loss by radiation, and P[™ and P© are, respectively, the active power of the
dynamic load of mechanical and electromagnetic origin. 1In the general case they are expressed
by the formulas

N = § (@ + Mppiyas, N =pn(§utds]
N =g §§ grad, Fyeas, N9 = @u [ §§S (graad opan|
Py = § (P + Q) Apdoy, PP =pt gﬁ Fey Ay doy 2.2
PY =p! SS @ (%)da
P (S x™was, PO =pgt {§ BoFas
ds = AAsdaydog, dv = Aud,Adadayda,

Here A; — A; are coefficients of the first quadratic form of the given coordinate
system, do is an element of the surface I enclosing the shell (by taking the latter to be a
sphere of radius r we will assume that r-— o), N is the unit normal to I external to V
(and later to 5) Ty, My, ex, Mjx are tensors of the forces, moments, strains, and angles
of rotation of the shell, P,Q,T' are the boundary values of the vectors of the surface
forces, moments, and elastic rotations, and j,k =1,2 are the subscripts over which summation
is made. Integration, here and later is over the surfaces S, I, the volume V, and the contour
G with elements ds, do, dv, da, unless otherwise stated.

Computations resulting in obtaining the relationships (2.1) and (2.2) can be reduced to
the following scheme. We write the first two eguations in (1.1) symbolically in the form
M@ @ X™) =0 and E(u, ¢, By) =0, respectively, and we differentiate the last equation
in (1.1) with respect to ¢. Multiplying these equations by a certain quantity and integrating
over the domains of definition, we form the sum

N = {§ [M@ o, X" —E@ 0.5 1 ]as— ({{ [a@) 2] av=0 2.3)

Let us expand the expressions in (2.3)
§§§ 2R (Luyu ds = ne™ — pgm 2.9

. .Eq.(2.4) follows directly from the results of /4/ if the operator L is formally self-
adjoint. ‘?he power of the elastic strains N™ can here be expressed in terms of the
shell strain potential energy ¥ by means of the formula N™ = W' where
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W”'ﬂ%gg {[812’*‘922’3‘2“152 + 1;v ("2] +

-’g— [#:2 4+ %92 + 29%;%, + {1 — v) t“]} ds

By W, Ry, T are components of the tangential and bending strains of the shell and v is
Poisson's ratio. The equalities
. ; B 'F
(O _. N 3 — (e) -1 .
—({xOwas =0, —(§(=-)ds = — P 5t (17 s (2:5)

can be confirmed by direct substitution taking (1.3} and (1.4) into account.
Using {1.3) and applying Stokes's theorem we have

. . F - .
(0= x®u + roty (' x B) o] ds =" Sg roty[F (u’ X B)]ds = (2.6)
—p O F (— 1) (Bys, — Bug) Adey, Lk=1,2, 14k

Green's theorem is used in two cases. We hence obtain

= §5 v 5] e = 00— § = 0 4 S @.7)
~ {55 [a@) 2] a0 =m0~ § {0 (22 ) a0 —
et s»&i-m( S )ds = N9 — PO it {( 17 as 2.8

Integration in the surface integral in {2.8) is over the whole surface S* 4 § - 2,
enclosing V where S* are understood to be the facial surfaces ;=240 on a mathematical
slit S. It is taken into account in obtaining the last component (2.8) that {OD/ON)* ==
—(8D/00g),*, (0D/ON), = (0D/das)s and also the equalities (1.2) and (1.4).

Summing the expressions in (2.3), taking (2.4)-{2.8) into account, we obtain (2.1).

We note that the last components in (2.5) and (2.8) cancel one another here while (2.6) and
the last component in (2.7) yield P/ when added (the second formula in (1.7) must also be
taken into account here).

We assume that the domain V can contain non-variable closed subdomains (V', V") that
do not make contact with the facial surfaces S and are occupied by material with the properties
of an ideal dielectric (V') or an ideal conductor (V") (the subdomains V" should be simply-
connected). An ideal dielectric does not distort the field ¢ while the normal component b
{n' is the normal) on the surface of an ideal conductor equals zero and therefore gQ0'/on’ = 0
in the surface integral (2.8). Consequently, the balance of the powers (2.1) and (2.2)
remains valid. We will alse assume that the condition wu-n’ =0 1is satisfied on sections
of the boundary G in contact with the ideal conductor, excepting penetration of the boundary
into V'.

3. We will examine the boundary conditions that must be appended to Egs.(1.1)-(1.4) by
limiting the examination to those for which Pglm) 4 P &) A P (@ == for compliance.

The first group of conditions in mechanical in nature, forms an ordinary system of shell
theory boundary conditions and, as is shown in /5/, ensures that Pg™ will equal zero for
such idealized boundary conditions as rigid clamping, hinge support, and a free edge, say.

The second group of conditions consists of satisfying the ordinary condition.of bounded-
ness /6/ of the potential ¢ at infinity (here P.® =0), the condition ad/on’ =0 on
the surface of the subdomain V" and one of the following conditions ( T and n are the
tangent and normal to &}:

F=0 or gFfon=0on G 3.1

Their physical meaning is as follows. As follows from (1.5}, the first and second
conditions in (3.1) denote that the normal and tangential components of the linear eddy
current density to G equal zero, which corresponds to conditions of a boundary insulated from
and in contact with an ideal conductor. Taking into account that in the case of boundary
contact with an ideal conductor wu:n’ =0 (see Sect.2) and B-.n’ =0, it is easy to obtain
the equality e; = (2ho)™taF/on from (1.5). Therefore, satisfaction of Conditions (3.1)
ensures the equality P,® =0,
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4, Eqgs.(1.1)-(1.4) are non-linear. They can be linearized /1/ without loss of accuracy
when solving the following two fundamental problems of the electromechanics of thin elastic
shells.

Problem 1 is to determine the influence of a constant (in time) magnetic field B° on
the free vibrations (X =0) or forced vibrations (X" = X0 (1)) of a shell. The
appropriate linear form of the equations can be obtained from (1.1)-{(1.4) if we put By =Jf;
in the second equation in (1.1}, while it is assumed that B =B° in the remaining
equations. These simplifications are associated with the fact that the magnetic field
occurring because of small shell vibrations is small compared with the magnetic field of the
secondary sources.

Problem 2 is to determine the elastic vibrations of a shell caused by a variable magnetic
field B°=B°(). The appropriate equations can be obtained from (1.1}-(1.4) by neglecting
the last component rot,; (u’ X B) in the second equation in (1.1). This is related to the
fact that the eddy currents caused by small shell vibrations are small compared with the
currents induced by the variable magnetic field B° of the secondary sources.

The solution of Problem 1 regquires the joint integration of the appropriate equations.

The equations of Problem 2 split into two subsystems whose integration determines the
two succeeding steps in solving the problem. The first step is the joint integration of the
equations obtained from the second and third equations in (1.1). The field @ (and the
function F) is hence determined. The second step is to solve the usual problem of integrating
the equations of shell motion {the first equation in {(1.1)} for a known pressure X
{determined by direct actions from {1.2)) and the pressure of the active forces X {these
may not be present, X{m = (). The integration problems solved in both steps are linear.

Problem 1 agrees with the problem of the magnetoelasticity of thin shells formulated in
/7/, while the equations of Problem 1, as shown in /8/, can be obtained from the equations in
/7/ by certain manipulations including the introduction of a magnetic potential and  dis-
carding asymptotically small terms. The first step in Problem 2 is identical with the
electrodynamic problems of thin conducting shells /9/ while the appropriate equations can be
reduced to the equations in /10/.

5. Let us examine Problem 1 by assuming that the perturbing forces X  and all the
quantities desired vary with time as exp (Q%). After discarding this factor in the equations
of Problem 1 we obtain them in the form

M, (u, @, Q, X)) = 2EhLu + 20hQ% + p3? (grad, F X ig) x B° — X™ = (5.1)

E,(u,D,Q) =yAF + Qfy— Qrot; (u x By =0, AD =0

We will first investigate the properties of the eigensolutions of Problem {5.1) by
setting X = (.

Let (uy, Du, Q) and  (uy, Dy, Qe) be two eigensolutions of the homogeneous Egs.
(5.1) that satisfy the boundary conditions listed in Sect.3 that ensure that p{™ + PP 4 PY

equals zero. (It is henceforth assumed everywhere that the solutions of all the boundary
value problems under consideration satisfy such boundary conditions).
We form the functional

F
Nug = SS [Mx(“m» Deys Ry 0) Qg — £ (iggy, Py, Q(q))";if‘] ds —

SSS [th)A (D) q:f:) ] dv =0, Fyy = (D) —(Dy),

Using the procedures described in Sect.2, we obtain
Nag = QW g + Qoo len + Poay + QaQug =0 (5:2)
Wag = 125}:,3 SS { [ el® + &6 + v (e"el® + ePel) -+ -1—'5-3— co‘”co“"] +
Vi 17850 + %% 4 v (0% + @) + (1 — v) 100 @] ds
g = 2ph S S Uy ds,  Pug) = Yito' S S grad, F(ygrad, Fig ds
Qup = 15" §§§ grad @) grad @ dv

Takin? account of the symmetry 9f the integrands Wy, Togpy Puen Quqy with respect to
the subscripts U’Q)t we form the difference Ny, — Ngn and neglecting the common factor
(Qgy — Q) we obtain the equality
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Wi + Quay — Qolalup =0, tsq .3)

Forming the differences QuwNuy — QplNen and  QpNupy — QnNyg, we can obtain two
more eguations analogous to (5.3)

Pup + Qg Ry + Q) Lup =0, Pug + (Quy + Qo) Wiag -+ Qug) =0 (5.4

Egs.(5.3) and (5.4) are three different kinds of analogue for the conditions of
orthogonality of the eigensolutions in the problem of the magnetoelasticity of thin shells.

We will now examine the problem of expanding the forms of forced vibrations of a shell
under the action of a harmonic force X acting at the angular frequency Q,, in eigen-
solutions of the problem. To do this we set Q = iQ,, in (5.1) and we seek the solution
in the form

An“(m» @ = E A D (5.5)

=
It
ﬁb/a

We form the functional
i mhQ E Dy Q) ] ds —
SS [Ml (a, ®, iQ,, X)) Quguegy — E4 (g, Pigy, @) el

SSS [Q(G)A ((D(q))‘% } dv=0, F= ,Z—{ A Loy

from which we obtain the egquality

%0

Z(Qer Qo) Inpy Ay = — SS X", ds

n=1

by taking account of (5.5), {(5.2) and (5.3).
Specifying the values 1,2,... to ¢ we obtain an infinite system of linear equations

in the coefficients 4, of the expansions (5.5).

6. We will examine the first step in the solution of Problem 2 by assuming that RB°
and @ vary with time as exp (Q1). We here start from the equations
Ey (@, Q, BY) = yAF + Qf; + QB =0, AD =0 {6.1)
Let (By, Qp) and  (Bg, Q) be two eigensolutions of the homogeneous Egs.(6.1) (By” =
0)
We form the functional

N g = = SS [E (Drys sy, 0) (q) ] ds — SSS [QmA (D) - (q) ] dv = (6-2)
Pugy — QinQug =0

Taking the difference Ny, — Ny and discarding the common factor (Qu — Q). using
(6.2) we obtain two equations

Qup =0, Puy =0, ¢ (6-3)

that express the orthogonality conditions and reciprocity theorem in the electrodynamic
problem of thin conducting shells.

The eddy currents and the electromagnetic field for a shell in a harmonic field B°
{of angular frequency ,) ©of secondary sources, will be determined by eigenfunction
expansions by setting £ =iQ,, in (6.1) and we represent @ in the form of the sum (5.5).

Let us form the functional
SS [E.(@,10,, B) -2 Lo 0 145 + SSS [19,4 @) <°>]du=.-o

from which we obtain an expression for the coefficients A4, of the expansion (5.5} for @
by taking account of {6.2)
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- iQ, ° ds
A= o= Qm SS By'F 100y

According to (6.2}, the substitution Quny = —Pwn)/Qm  can be made here.

The equations and properties of the solutions of the second step in Problem 2  are
investigated in detail in shell theory. It must here be kept in mind that because of the
non~linearity of (1.3) for X®  in the derivatives of the function @ the magnetic
pressure on the shell contains a constant (time-independent) component and a harmonic com~
ponent {(with angular frequency 2Q,).

7. As is seen from (2.1) and (2.2) the electromechanical process in a shell is non-
conservative and accompanied by a power loss governed by the component &?) and related
to the liberation of heat because of the heating of the shell by the eddy currents. Con=
sequently, the problem should generally be considered from the aspect of magnetothermoelas-
ticity /11/ i.e.,temperature stresses should be taken into account.Leaving this question as
outside the scope of this paper, we note that thermal losses in a shell occur in the com=
ponent N® of (2.1), while they can be determined (taking (6.3) into account) from the
formula

1/2’?“;1 SS grad, Fgrad Fds
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